Periplasmic electron transfer via the c-type cytochromes MtrA and FccA of Shewanella oneidensis MR-1.
نویسندگان
چکیده
Dissimilatory microbial reduction of insoluble Fe(III) oxides is a geochemically and ecologically important process which involves the transfer of cellular, respiratory electrons from the cytoplasmic membrane to insoluble, extracellular, mineral-phase electron acceptors. In this paper evidence is provided for the function of the periplasmic fumarate reductase FccA and the decaheme c-type cytochrome MtrA in periplasmic electron transfer reactions in the gammaproteobacterium Shewanella oneidensis. Both proteins are abundant in the periplasm of ferric citrate-reducing S. oneidensis cells. In vitro fumarate reductase FccA and c-type cytochrome MtrA were reduced by the cytoplasmic membrane-bound protein CymA. Electron transfer between CymA and MtrA was 1.4-fold faster than the CymA-catalyzed reduction of FccA. Further experiments showing a bidirectional electron transfer between FccA and MtrA provided evidence for an electron transfer network in the periplasmic space of S. oneidensis. Hence, FccA could function in both the electron transport to fumarate and via MtrA to mineral-phase Fe(III). Growth experiments with a DeltafccA deletion mutant suggest a role of FccA as a transient electron storage protein.
منابع مشابه
Mind the gap: cytochrome interactions reveal electron pathways across the periplasm of Shewanella oneidensis MR-1.
Extracellular electron transfer is the key metabolic trait that enables some bacteria to play a significant role in the biogeochemical cycling of metals and in bioelectrochemical devices such as microbial fuel cells. In Shewanella oneidensis MR-1, electrons generated in the cytoplasm by catabolic processes must cross the periplasmic space to reach terminal oxidoreductases found at the cell surf...
متن کاملCharacterization of the periplasmic redox network that sustains the versatile anaerobic metabolism of Shewanella oneidensis MR-1
The versatile anaerobic metabolism of the Gram-negative bacterium Shewanella oneidensis MR-1 (SOMR-1) relies on a multitude of redox proteins found in its periplasm. Most are multiheme cytochromes that carry electrons to terminal reductases of insoluble electron acceptors located at the cell surface, or bona fide terminal reductases of soluble electron acceptors. In this study, the interaction ...
متن کاملProgramming the quorum sensing-based AND gate in Shewanella oneidensis for logic gated-microbial fuel cells.
An AND logic gate based on a synthetic quorum-sensing (QS) module was constructed in a Shewanella oneidensis MR-1 mtrA knockout mutant. The presence of two input signals activated the expression of a periplasmic decaheme cytochrome MtrA to regenerate the extracellular electron transfer conduit, enabling the construction of AND-gated microbial fuel cells.
متن کاملReconstruction of Extracellular Respiratory Pathways for Iron(III) Reduction in Shewanella Oneidensis Strain MR-1
Shewanella oneidensis strain MR-1 is a facultative anaerobic bacterium capable of respiring a multitude of electron acceptors, many of which require the Mtr respiratory pathway. The core Mtr respiratory pathway includes a periplasmic c-type cytochrome (MtrA), an integral outer-membrane β-barrel protein (MtrB), and an outer-membrane-anchored c-type cytochrome (MtrC). Together, these components f...
متن کاملMind the gap: diversity and reactivity relationships among multihaem cytochromes of the MtrA/DmsE family.
Shewanella oneidensis MR-1 has the ability to use many external terminal electron acceptors during anaerobic respiration, such as DMSO. The pathway that facilitates this electron transfer includes the decahaem cytochrome DmsE, a paralogue of the MtrA family of decahaem cytochromes. Although both DmsE and MtrA are decahaem cytochromes implicated in the long-range electron transfer across a ~300 ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Applied and environmental microbiology
دوره 75 24 شماره
صفحات -
تاریخ انتشار 2009